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Scaling Exponents for Driven Two-Dimensional 
Surface Growth 
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We present results of numerical simulations to estimate scaling exponents 
associated with driven surface growth in two spatial dimensions. We have 
simulated the restricted solid-on-solid growth model and used the time- and 
system-size-dependent interface width and the equal-time height correlation 
function to determine the exponents. We also discuss the influence of various 
functional fitting ansatzes to the correlation function. Our best estimates agree 
with the results of Forrest and Tang obtained for a different growth model. 
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Kinetic roughening of interfaces is a ubiqui tous phenomenon  which takes 
place under  a variety of nonequi l ibr ium conditions, t~) One of the most 
commonly  used examples of a class of systems undergoing this process is 
driven surface growth far from equilibrium, where the surface current is 
nonconserved and diffusion rates are very slow compared to the driving 
force, t2) In this case the relevant mapping of the problem in the con t inuum 
limit is given by the K a r d a r - P a r i s i - Z h a n g  (KPZ)  equat ion 13) 

oh  (ohh  
o-7= v + \ Or ] +'1 (1) 

where v and 2 are constants,  and t / is  a random noise term with 

(r/(r, t) r/(r', t ' ) )  = 2D 6 2 ( r -  r ' )  6(t - t ') 
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The height variable h(r, t) describing the surface is a function of time and 
two-dimensional vector r, and the total dimensionality is denoted by 
d = 2 + l .  

Due to the scaling relation for the interface width ~4~ 

w(L, t) ~ LZf(tL -:)  (2) 

where L is the system size, and the scaling relation z + X = 2, there is only one 
independent scaling exponent for the problem. It is usually determined either 
from w(t) ~ t B, where/3 = X/z, or from the steady-state limit w(L) ~ L x. 

The scaling exponents are exactly known only in d =  1 + 1 dimensions, 
where /3= 1/3. c3) Much analytic and numerical work has been carried 
out in order to establish general, dimension-dependent values for the 
exponents, t~ Monte Carlo simulations of discrete growth models have 
proven useful for this purpose. For example, extensive work tS~ on the 
hypercubic stacking model has given /3(3)= 0.240(1) and /3(4)= 0.180(5). 
Ala-Nissila et al. 16~ simulated the restricted solid-on-solid growth (GRSOS) 
model up to d = 7 +  1. By concentrating on d~>3+ 1, they obtained 
/3(4)=0.180(2), in excellent agreement with ref. 5, but not with the 
conjecture /3(d)= 1/(d+ 1), t7) and showed that there is no upper critical 
dimension up to d =  7 + 1. Their high-accuracy data for d =  3 + l were 
based on a novel fitting ansatz for the equal-time correlation function 

G(r, t )=  ([h(r '  + r, t ) - h ( r ' ,  t)]2), .  (3) 

averaged over r', as 

(~t (r, t) = at ( t ) { tanh[b , ( t ) r  ;'to')] }"' (4) 

where al(t), bl(t), and 71(t)=2f(l( t) /xl  are fitting parameters, and xl is 
fixed. This functional form gives, after fixing x~, an estimate of fl through 
a,(t)~fl /~,  and also for X~)~ I and z. ~6) 

In this note, our purpose is to present new simulation data for the 
GRSOS model in two spatial dimensions and estimate the corresponding 
scaling exponents. This case is particularly interesting for its potential 
for experimental realizations and also from a theoretical point of view. 
In contrast to other recent work claiming fl=0.25, ~81 our best estimate 
/3(3)=0.240(2) is in excellent agreement with the hypercubic stacking 
model, tS~ although finite-size effects seem to be somewhat pronounced. We 
also discuss the influence of different forms of fitting functions, in addition 
to Eq. (4), to exponents extracted from the time-dependent correlation 
function. 
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Table I. 
and 

Results of Least-Squares Fitting to Time- 
System-Size-Dependent Width wZ( L, t )" 

L /~(3) Number  of runs 

100 0.226(1) 3000 
200 0.231(2) 2750 
300 0.232(2) 400 

1000 0.236(2) 25 
2000 0.239(3) I0 

'~ Error bars are purely statistical. 

First, we used the time-dependent width w~(t) for several system sizes 
to determine ft. The results of least-squares fitting are presented in Table I. 
In Fig. 1 we show these values plotted against 1/L. The result for the 
largest system size studied, L = 2000, already comes very close to 0.240 as 
obtained in ref. 5, although statistical errors increase considerably for 
the largest systems. We note that analysis of the data in the form of 
log[w2(2t ) -w2( t ) ]  vs. log(t) as in ref. 5 failed to produce any consistent 
results. 

To corroborate these findings, we next calculated the saturated width 
w'-(L)~L 2x for L =  125, 250, and 500. These data give w2=5.15(2), 
8.67(2), and 15.1(8), where the errors have been estimated from fluctua- 
tions between consecutive runs. From a least squares fit we obtain 
X(3)=0.387(2), which gives fl(3)=0.240(2), in complete accordance with 
the time-dependent width. 
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Fig. 1. 
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Estimates of 8(3) as obtained from least-squares fits to w2(t) (see Table I for details). 
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As previously shown, 16~ the fitting ansatz (4) can be used to obtain 
accurate estimates of fl even for relatively small systems. In ref. 6, accurate 
results for fl were obtained by using Eq. (4). It was also shown that the 
values of ~ obtained were somewhat smaller than those corresponding to 
fl [as extracted from a~(t)], except in d =  1 + 1 dimensions. In the previous 
work, x~ was fixed to be x~ = 1 ( d =  1 + 1) or 1/2 ( d > j 3 +  1). In this work, 
we let xj vary and also extend the original fitting ansatz to include the 
following new fitting functions: 

and 

(~2(r, t) = a2(t){ 1 -- exp[ -b2(t)r ~'2~'}] }.,-2 

O3(r, t)=a3(t) { - 4  + arctan[exp(-b3(t)r~'3c"]} '~ 

(5) 

(6) 

where a2(t), a3(/), b2(t), b3(t), ~2(t)==-2f~2(t)/x2, and ~3(l)~2~3(t)/X3 a r e  

new fitting parameters. To perform the fitting, we calculated 3000 averages 
of the correlation function (3) for L = 100 and 540 averages for L = 200 
and 500. 

To test the quality of the fitting functions, we first fixed Zi = 0.387 for 
each function and allowed xi to vary. Data for L = 200 were used. For each 
function, then x i was fixed corresponding to an average value obtained 
between 248 and 600 Monte Carlo time steps per site (MCS/s), where 
typical variations of x~ are less than about 10%. This gives x~ =0.7389, 
x2=0.4781, and x3=0.6484, which values were in turn used to obtain 
)~1=0.387(8), ~2=0.387(5), and ~3=0.386(8), respectively, as average 
values over 248-800 MCS/s. Next, we calculated estimates for the exponent 
z, averaging results for c = 0.9 and 0.95 over 248-800 MCS/s (as explained 
in ref. 6), and obtained z = 1.60(2), 1.62(2), and 1.61(2) for fitting functions 
(4), (5), and (6), respectively. These values obey the scaling relation ~ + z, 
giving 1.99(3), 2.01(3), and 2.00(3), respectively. This demonstrates that the 
quality of each fitting function is very good. 

Next, we fixed x2 as above and calculated a2(t) for the fitting function 
of Eq. (5), which gave the smallest variation for ~. Results for the other 
functions are consistent. For L = 100 and 200, both the original correlation 
function and the fitting data are very smooth, and least squares fitting to 
a2(t) gives fl = 0.242(2) and 0.240(2), respectively. For L = 500, the data are 
not as good, but fitting to a relatively straight region of the log-log curve 
gives 0.238(1) (the error bars are purely statistical). These values are in 
excellent agreement with data obtained from the width for the largest 
systems in Table I. 
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As a final check, we calculated the scaling function of Eq. (2) as shown 
in Figs. 2a and 2b. For the range of system sizes studied in Table I, 
/ /=  0.24 in Fig. 2a gave clearly better scaling than / /=  0.25 of Fig. 2b. In 
the inset of each figure, we also show the scaling functions for L = I000 and 
2000 only. For these two largest system sizes, the accuracy of the data do 
not allow us to distinguish between the two values of the exponent. 

To summarize, we have presented results of rather extensive simulations 
of the GRSOS model for system sizes up to L = 2000. Our best estimate 
//(3) =0.240(2) comes out from various independent ways of determining 
the scaling exponents, and is in excellent agreement with ref. 5 for the range ' / 
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Fig. 2. (a) Scaling of w(L, t) for L=  100, 200, 300, I000, and 2000, with fl=0.24, and (b) 
the same data for fl=0.25. Insets show scaling between L = 1000 and 2000 only. 
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of system sizes considered in the present work. Unfortunately, a straight- 
forward extension of this work to larger systems becomes prohibitive, since 
several hundred hours of computer time in RISC workstations was required 
here already. 
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NOTE ADDED IN PROOF 

A single run for a L = 4000 system gives results fully consistent with 
L =  2000, with fl increasing at later times accompanied by very large 
fluctuations in w(t). 
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